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Neural Network Approach to Fatigue-Crack-Growth
Predictions Under Aircraft Spectrum Loadings
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An artificial neural network (NN) method is developed to represent the fatigue-crack-growth and cycle
relationships under spectrum loadings of the Mirage aircraft operated by the Royal Australian Air Force. This
method utilizes load cycle spectrum using available flight and experimental data for crack growth vs cycles as
input. The trained network is able to predict the relationship between the crack-growth and the loading cycles.
The neural network is able to predict the crack-growth cycle behavior for different variations in the original
loading spectrums. The results predicted by the NN model seem reasonable and the model is capable of rep-
resenting crack-growth behavior for various arbitrary aircraft spectrum loadings with certain limitations. In
addition, an attempt is made to predict the material parameters for Walker's fatigue-crack-growth relationship
using a different neural network. Because of the demonstrated performance, it is possible that the proposed
NN approach can be extended with more research effort to estimate the fatigue life of arbitrary cracked structural
components under complex loadings in real time.

Nomenclature
a = crack length, in.
B = specimen thickness, in.
C = Walker crack-growth rate constant, constant
da/dN = fatigue-crack-growth rate, in./cycle
K = stress intensity factor, ksiVin.
m = Walker stress ratio exponent, constant
N = loading cycles, cycles
n = Walker equation's exponent, constant
P = uniaxial load on specimen, Ib
r = stress ratio, constant
W = specimen width, in.
kK = stress intensity factor range, ksiVin.
a = applied stress, psi

I. Introduction

M OST aircraft are subjected to different spectrum load-
ings throughout their flight regime. These loadings have

a significant effect on their performance and life. Due to the
large cracks that develop in certain aircraft because of fatigue
loadings, flight loading limits were imposed to reduce the risk
of in-flight structural failures and to reduce the crack-growth
rate. These limits were in the form of a g limit, also referred
to as a "placard" limit. Their effect was to truncate the max-
imum positive load levels in the loading spectrum. Removing
certain peak loads has the potential for decreasing the life
due to the loss of beneficial fatigue-crack retardation effects.
Experimental and analytical studies showed that variations in
flight loading had the potential for reducing beneficial retar-
dation effects.1 The delay or retardation effect on crack growth
from a single peak tensile over a single load and multiple
overloads are given in Refs. 2 and 3. The greater the mag-
nitude of the overload, the greater the delay effect on fatigue-
crack growth up to a sufficiently large overload.2 The delay
effect due to spectrum load sequence was studied by and
showed the relation of fatigue-crack-growth retardation be-
havior due to crack-closure phenomena.
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The fatigue-crack-growth mechanism involves a crack growth
by a minute amount in every load cycle. Crack-growth life is
expressed as the number of cycles required to grow a fatigue-
crack over a certain distance. To determine the fatigue-crack-
growth behavior, fatigue experiments are usually conducted
on cracked specimen/components and the crack length a is
plotted against the corresponding number of cycles N at which
the crack is measured. The crack-growth rate da/dN (average
length/cycles) is obtained by taking the derivative of the above
crack length a vs cycles N curve. The crack-growth rate is a
function of stress intensity factor range &K and stress ratio r
(defined as crmin/crmax). This relationship is given as

(i)
where A/C is a function of applied stress range ACT (crmin —
crmax), geometry of the crack /(g), crack size a, etc. The min-
imum stress crmin and maximum stress crmax are obtained from
constant amplitude or variable amplitude spectrum loading.
The A/C relation is given by

(2)

A plot of log da/dN vs log A/C is a sigmoid curve. The
majority of the fatigue life is taken up in propagation of a
crack. Many structures/components operate in this region of
crack propagation. By the use of fracture mechanics principles
it is possible to predict the number of cycles in growing to a
critical crack size or to find final failure.

The problem of fatigue-crack-growth behavior represen-
tation is complex and exhibits a nonlinear relationship be-
tween the crack-growth and loading cycles as given above.
Most of the crack-growth models are based on empirical data.
As an alternative to mathematical description, it will be of
interest to use the neural network (NN) approach to represent
the complex fatigue-crack-growth behavior for aircraft spec-
trum loadings.

An attempt has been made in this study to predict the
relationship between the crack-growth and loading cycles us-
ing a novel computational paradigm based on artificial neural
network models. NN is a paradigm for computation and
knowledge representation inspired by the neuronal architec-
ture and operation of the human brain. There have been
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Fig. 1 Fatigue-crack-growth representation model using NN.

considerable research efforts in different applications of NN
in the past: signal processing,5 robotics,6 structural analysis
and design,7 and pattern recognition,8'9 to name a few. Other
related work in the use of NN for effective modeling of a
complex, highly nonlinear relationship among data sets can
be found in Ref. 10. The resurgence of earlier research in
NN has also facilitated the development of a novel approach
to the derivation and representation of material behavior.11'12

With this new approach, the knowledge of the materials be-
havior is captured within the connections of a learning NN
that has been trained with experimental data. Recently, the
NN approach was used to estimate the fatigue life of simple
mechanical components.13

The objective of this study is twofold: 1) to represent the
fatigue-crack-growth behavior under spectrum loadings using
a NN model, and 2) to predict the material parameters for
Walker's fatigue-crack-growth equation.14 The essential fea-
tures of a spectrum loading as well as the corresponding crack-
growth behavior based on experimental data15 are used as
input to the network. The trained network is tested using
different variations in spectrum loadings. The accuracy of the
results obtained demonstrates that the NN method is a feasible
approach for estimating the fatigue-crack-growth behavior and
material parameters.

II. Fatigue-Crack-Growth Representation Model
Figure 1 shows a NN-based fatigue-crack-growth represen-

tation model for arbitrary spectrum loadings. This model is
intended to predict the crack-growth behavior as well as the
material parameters that fit into a relationship for cracked
structural components. The NN model is based on the
experimental data of crack growth vs loading cycles for a
particular material. This NN approach is very useful for real-
time estimates of critical crack lengths for the remaining load-
ing cycles for operation of the cracked component or structure
after it is generalized with experimental data. The model con-

sists of two neural networks: 1) fatigue-crack-growth network
(FCN) and 2) material parameters network (MPN), as shown
in Fig. 1.
A. FCN

The underlying approach toward developing a NN-based
fatigue-crack-growth behavior is to train a NN to map the
relationship between crack growth and the number of loading
cycles. The results from the experimental data for a particular
material serve as input data to the network. The trained net-
work would contain sufficient information about the mate-
rial's crack-growth behavior. This trained network could be
qualified as a model when the network is able to reproduce
the trained data as well as other data for generalization.

The FCN receives the information about the features in the
spectrum loading and crack-growth behavior for a particular
cracked component and outputs the corresponding loading
cycles. It is also possible to include a preprocessor before the
FCN to extract salient features of the loading spectrum. How-
ever, in this present study, the salient features like peak am-
plitudes and location were used as the features for input to
the FCN. The results from the FCN are processed by a post-
processor, in this case, a curve fit to generate the crack-growth
rate da/dN curve.
B. MPN

The objective of this neural network is to find the material
parameters that fit into the Walker equation.14 Experimental
data of A/C and da/dN for different values of stress ratio and
spectrum loadings are used to fit the Walker equation. The
Walker equation is well known and takes into account the
effect of stress ratio on crack-growth behavior for an applied
A/C, and is given by

da_
dN = C[(l - r)m-lkK]n, r > 0.0 (3)

where C, m, and n are material constants.
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The results of da/dN vs A/£ curve for a particular stress
ratio r are used as inputs to the MPN. The MPN processes
these data to give the required material parameters. In the
present study, Walker's fatigue-crack-growth equation, which
is defined in terms of three material parameters C, m, and n,
was used. However, the present approach can be extended
to include other fatigue-crack-growth relationships. Both FCN
and MPN have a different network architecture; i.e., different
sets of I/O nodes and middle layers. The model presented
here serves as an alternate to the existing mathematical or
empirical models for fatigue-crack-growth representation based
on the experimental data.

The distinctive features of the NN approach for fatigue-
crack-growth representation are generalization, speed, and
robustness or fault tolerance. Generalization ability lies in
utilizing the network, after it has been trained, for variations
on other arbitrary spectrum loadings that are not closely re-
lated to the training set. The parallel architecture of NN en-
ables it to compute rapidly the critical crack lengths or loading
cycles (fatigue life) in real time. Because of its distributed
nature, the NN implementation of the fatigue-crack-growth
relationship is expected to be robust and reliable. The details
and implementation procedures for the FCN and MPN are
discussed in the following sections.

III. Artificial Neural Networks
Artificial NNs are computational models that are modeled

after the functionality of the human brain. It consists of a
large number of highly interconnected artificial neurons called
the processing units. Each processing unit, acting as an ideal-
ized neuron, receives input from the units to which it is con-
nected, computes an activation level, and transmits nonuni-
formly transformed activation to other processing units. The
I/O of a NN computation is represented by the activation
level of designated I/O units, respectively. What the network
computes is highly dependent on how the units are intercon-
nected and the strength of the connections between them.

The NN derives the knowledge through presentation of
examples, training cases, and the application of their self-
organization capabilities. Different types of networks are pos-
sible by varying the number of nodes and their connectivity
and the form of learning rules and activation functions that
are used in the NN architecture. Artificial NN models are
loosely classified into four different categories based on their
learning qualities (unsupervised or supervised learning) and
recall qualities (feedback or feed-forward recall).10 Various
NN models developed under these categories have been suc-
cessfully applied in solving problems in several application
areas such as signal analysis and processing, process control,
robotics, pattern classification, noise filtering, speech pro-
cessing, medical diagnosis, and many others.10

Among all other NN models developed thus far, back-prop-
agation (BP) NN models have been very successful in solving
various engineering and pattern recognition problems. The
BP network is a feed-forward, multilayered network consist-
ing of an input layer, one or more hidden layers, and an output
layer. Each layer consists of several artificial neural cells. Each
neuron cell consists of three main components: 1) a set of
inputs, 2) a summation function, and 3) a transfer function
to deliver an output. A back-propagation NN is used in this
study to represent the fatigue-crack-growth relationships as
well as for material parameter predictions under arbitrary
spectrum loadings.

In order to describe the learning process in detail, consider
the organization of a single artificial neuron unit (unit j at
layer h of FCN of Fig. 1) shown in Fig. 2. Every unit in the
FCN model is identical to the one shown in Fig. 2. Each unit
also has identical connectivity and a certain computational
property. For example, each unit in a given layer h is con-
nected by all units in layer (h - 1). Each connection has
a weight W{), weight on connection joining /th unit in layer

X = +1 (bias)

Fig. 2 Organization of an artificial neuron unit in a fatigue-crack-
growth network.

(h - 1) to the yth unit in layer h, associated with it. Each
unity has an output state X-r which is a weighted sum of inputs
to this particular unit. Using the representative unit shown in
Fig. 2, the learning algorithm for FCN can be summarized as
follows:

1) Present the input vector jc1? Jt2, . . . , XN to the input
layer. This layer of the FCN has 84 input units. Each input
unit receives a unique input item that corresponds to the
salient features of the spectrum: variation of amplitudes with
time, crack size, etc.

2) The next step is to calculate the output of unit j in layer
h. In order to do this, first compute the summation value S
for unit / in layer h using the equation

= X

and then calculate the output of this unit as

(4)

(5)

where </> is a transfer function. In this implementation 4> is
used as a sigmoid function, which is given by

= (1.0 (6)

The previous step is performed on all units at all three layers
and up to the output layer.

3) At the output layer, calculate the actual output value o,
in this case the number of TV, for each unit k and then calculate
a global error E using the equation

E = 0.5 x (tk - (7)

where / is the desired output and o is the actual output for a
given input vector i. E defined in Eq. (7) corresponds to a
global error of the network for a particular (/, t). The aim of
the learning process is to minimize E of the network by mod-
ifying the connection weights.

4) The modification of connection weights is accomplished
based on knowledge of the local error at each processing unit
and back-propagating this error information to the previous
layers. The connection weight change is computed using the
equation

= j] x 8' x (8)
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where 6y is the term used to back-propagate errors in the
hidden layer and 17 is the learning coefficient. The 6; term is
given by

8h = xh(l - x'1) X 5/7 + 1W£+1 (9)

The main idea here is to forward-propagate the input through
the layers to the output layer, determine the error at the
output layer, and then back-propagate the errors back through
the network from the output layer to the input layer using
the previous equation.

5) The final step now is to update all weights in the network
by adding the current delta weights to the previous weights
using the equation

+7.5

AWg- - 77 x 8'; + (10)

where a is a momentum term that is used to speed-up the
convergence while avoiding instability.

The process of forward-feeding the input and back-prop-
agating the error will continue until the error at the output
nodes is zero or is within an acceptable range. At this point
the network is said to be converged.

IV. Implementation
Center-cracked specimens of 7075-T651 aluminum alloy

subjected to loading spectrums of the Mirage aircraft operated
by the Royal Australian Air Force were used to determine
the effect on fatigue-crack-growth behavior by imposing a
flight loading or placarded g limit. The maximum and mini-
mum stress intensity factor for the center-cracked specimen
is calculated as

K = (11)

The experimental data reported in Ref. 15 was used to train
the FCN. The FCN shown in Fig. 1 is modeled as a back-
propagation NN that has three hidden layers. The NN ar-
chitecture used in this study was based on empirical results
as there are no rules available in the literature. The FCN
developed in this investigation has one input layer with 84
nodes, three middle layers with 125, 65, and 45 nodes, re-
spectively, and one output layer with 12 nodes (84-[125-65-
45]-12).

The 84 input parameters chosen in this study are based
upon various spectrum loading characteristics. For example,
the first value represents the number of cycles and the second
and third values correspond to the maximum and minimum
amplitude of that particular cycle. Each spectrum has a four-
flight loading sequence: CBAA'. This way, e.g., loading C
contributes to 9 inputs (3 types of cycles and their corre-
sponding maximum and minimum amplitudes), loadings B,
A, and A' have 15, 21, and 27 inputs, respectively, and 12
crack-growth increments (total input to the NN being: 9 +
15 + 21 + 27 + 12 = 84). The 12 output nodes represent
the number of loading cycles corresponding to the 12 crack-
growth increments in input nodes. Details of input data or-
ganization for the FCN are described in the next section.

Learning or training involves presenting the network with
the experimental data such that it correctly reproduces the
number of cycles for predetermined crack-growth lengths for
each of the spectrum loadings. It was discovered that an ef-
fective way to train the NN is to present the data in normalized
form. In this study, the number of cycles and the crack lengths
in the data set were normalized between 0 and 1. This nor-
malization allowed the trained NN to generalize better, and
hence, generated more accurate results during the testing pro-
cess.

Figure 3 shows the various Mirage spectrum loadings con-
sidered in this study.15 These include constant amplitude spec-

Unmodified Mirage loading spectrum

Loading spectrum with 6.5g limit

Loading spectrum with 5.0g limit

Loading spectrum with 8.5g limit

Constant amplitude spectrum (0.5-5.0)

Fig. 3 Various spectrum loadings considered in this study.15

trum of 0.5-5.0, unmodified Mirage spectrum (7.5g spec-
trum), spectrum truncated at + 6.5g level (6.5g spectrum),
spectrum truncated at + 5g level (5g spectrum), and spectrum
truncated to + 8.5g (8.5g spectrum). The graphical represen-
tation of these loading spectrums and details of the loadings
for each of the four different flight segment blocks, (A', A,
B, C), which make up the spectrum, are also shown in Fig.
3. The crack-growth loading cycle curves for these loading
spectrums were obtained from Ref. 15 and digitized. These
five different spectrums have different values of cycles for
final failure.

The FCN completed training at approximately 1510 itera-
tions. The convergence criteria used in training the NN was
set at a global error, E < 0.000001. The learning coefficient
77 and the momentum term a were determined empirically
and were set at 0.8 and 0.7, respectively. Details of different
learning algorithms and implementation procedures can be
found in Refs. 9 and 10.

After the network has completed the training phase, a set
of test data that the network had not seen before was pre-
sented during the testing phase. The set of data used for
testing had changes in g of the spectrum as well as changes
in flight segment blocks of the spectrum. The testing and
learning procedures were implemented on a SUN/SPARC2
system. The results are presented in the next section.

The MPN is also modeled similar to the FCN model using
a back-propagation network as described earlier. However,
unlike the FCN, this network has only three inputs and three
outputs. As shown in Fig. 1, MPN has only one hidden layer
with 17 units. The input to the network consists of da/dN,
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A/C, r, and the output from the network is the three material
parameters, C, m, and n (see Fig. 1). The network was trained
with constant amplitude and spectrum loadings of 7.5 and
6.5g, and tested with 5.0 and 8.5g spectrum loadings. The
convergence criteria for the network, learning coeffients, and
momentum term values used for MPN are similar to the ones
used for the FCN.

V. Results and Discussion
Figure 4 shows the results of crack-growth cycles behavior

after training the network for an accuracy of 0.000001 between
the experimental data and neural network predictions. The
results are in good agreement with the experimental data for
all the five different loading spectrums. It can be seen from
Fig. 4 that the network has learned the crack-growth behavior
for the five types of spectrum loadings that it has trained in.

With limited experimental data on constant amplitude load-
ings, the NN was not able to generalize fully. No other ex-
perimental data was available for training to generalize the
NN for constant amplitude as well as spectrum loadings. To
enhance the predictive capabilities of NN, analytical results
for constant loading were used. The following experiments
were done:

A. Experiment 1
The crack-growth vs cycles data for 0.45-4.5 and 0.55-5.5

constant amplitude loadings was generated analytically using
Eqs. (3) and (11). The NN was trained using this data and
the experimental data for the five spectrum loadings shown

—— Experimental Data
O NN Prediction

100000
number of cycles

200000

Fig. 4 Comparison of NN predictions with experimental data for the
five trained spectrum loadings.

in Fig. 3. This trained NN was then used to predict the crack-
growth behavior for 0.4-4.0 and 0.6-6.0 constant amplitude
loadings.

Figure 5 shows the NN-predicted crack-growth behavior
for 0.4-4.0 and 0.6-6.0 constant amplitude loadings. The
crack-growth behavior for these two cases calculated from
Eq. (3) is also shown in Fig. 5. There is a 14 and 11% dif-
ference between the NN-predicted results and the analytical
data for 0.4-4.0 and 0.6-6.0 constant amplitude loadings,
respectively. These differences are reasonable as there is a
14% difference between the analytical results and the exper-
imental data obtained in Ref. 15. The results from this ex-
periment illustrate the NN approach for fatigue-crack-growth
behavior under constant amplitude loadings with reasonable
size of training data.

B. Experiment 2
The objective of this experiment is to compare the NN

predictions with the experimental data in Ref. 15. The net-
work was trained with 0.4-4.0 (analytical), 0.55-5.5 (exper-
imental), and 0.6-6.0 (analytical) for constant amplitude
loadings, as well as the 5.0, 7.5, and 8.5g spectrum loadings
from experiments. The network converged at approximately
50,000 iterations to reach an accuracy of 0.000001. The trained
network was then tested for 0.5-5.0 constant amplitude load-
ing as well as for the 6.5g spectrum loading so that a com-
parison can be made with available experimental data. Figure
6 shows the results of crack-growth vs cycles behavior for
these two cases along with the experimental data. A very good
agreement is seen for the constant amplitude loading. There
is a 10% difference between the NN prediction and the ex-
perimental data for the 6.5g spectrum. These results dem-
onstrate the ability of NN to learn and predict the crack-
growth vs cycles behavior for constant amplitude as well as
for spectrum loadings.

In addition to the above experiments, the following ex-
amples were studied to see whether the NN can predict the
correct influences for variations in the loading spectrums:

1) Effect of changing g values of the spectrum

7.5g spectrum was reduced to 4.0g spectrum
7.5g spectrum was reduced to 6.0g spectrum
7.5g spectrum was increased to 9.5g spectrum

2) Effect of changing the sequence of blocks in the loading
spectrum

Loading flights A and A' were interchanged (CBA'A)
Loading flights A and B were interchanged (CABA')
Loading flights B and C were interchanged (BCAA')

20000 40000 60000

number of cycles
80000

Fig. 5 Comparison of NN predictions with Walker's equation for
constant amplitude loadings.

NN Prediction
Experimental data [15]

30000 60000 90000

number of cycles
Fig. 6 Comparison of NN predictions with experimental datal;

constant amplitude (0.5-5.0) and 6.5g spectrum loadings.
for
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Figure 7a shows the NN-predicted crack-growth cycles (a
vs ri) behavior for 4.0 and 6.0g spectrums. The original ex-
perimental data for 5.0 and 6.0g spectrum loadings are also
shown in the same figure for relative comparison. It can be
seen from Fig. 7a that when the 1.5g spectrum was reduced
to 4.0g, the fatigue life was reduced from 91,962 cycles to
44,900 cycles. Similarly, when the loading spectrum was de-
creased from 7.5 to 6.Og, the fatigue life was decreased from
91,962 cycles to 61,645 cycles. These NN-predicted results are
reasonably within the experimental data range. The effect of
increasing the 7.5g loading spectrum to 9.5g resulted in a
twofold increase (190,000 cycles as compared to 91,962 cycles)
in fatigue life (see Fig. 7b). Even though the NN-predicted
results for the 9.5g spectrum are higher than those obtained
for the 8.5g spectrum, there is a possibility that fracture could
take place at the 9.5g peak load, thus significantly reducing
the crack-growth life. Since there is no fracture criterion in
the NN architecture, the NN approach has no means of de-
termining if fracture would occur earlier at 9.5g. This is the
limitation of the proposed NN method.

Table 1 demonstrates the effect of changing the sequence
of flight blocks in the 5, 6.5, 7.5, and 8.5g loading spectrums.
It can be seen from Table 1 that changing the sequence of
flight blocks reduced the fatigue-crack behavior as compared
to original experimental data for all the spectrums considered.
The flight-block sequence CBA'A has greater effect on fa-
tigue-crack-growth behavior for 6.5, 7.5, and 8.5g spectrums,
whereas the flight-block sequence CAB A' has greater effect
for the 5g spectrum. This is because a higher load was applied
in the loading sequences, which will drastically reduce the
crack-growth behavior. The flight sequence BCAA' has a
lesser effect for all the spectrum loadings. The effect of chang-
ing the sequence of flight loadings has a greater impact on

0.8-
(0
0)

o 0.6-

0.4-

1 0.2

0.0

Experimental data (5.0g spectrum)
Experimental data (6.5g spectrum)
NN Prediction (4.0g spectrum)
NN Prediction (6.0g spectrum)

a)
20000 40000 60000 80000

number of cycles

0.8

S 0.6 H

£ 0.4-
O>

o 0.2-

0.0

Experimental data (7.5g spectrum)
NN Prediction (9.5g spectrum)

b)
100000

number of cycles
200000

Fig. 7 Comparison of NN predictions for variations in g values in
the loading spectrums: a) 4.0 and 6.0g and b) 9.5g spectrums.

Table 1 Percentage reduction in NN predicted fatigue life
corresponding to a critical crack size of 0.55 in. for different

variations in the sequence of blocks in spectrum loadings

Spectrum, g
Flight sequence 6.5 7.5
Original spectrum

CBAA'
CBA'A
CABA'
BCAA'

100.0
5.7
7.5
3.4

100.0
24.0
18.0
8.0

100.0
42.0
32.0
12.0

100.0
64.0
31.0
0.8

UJ_J
O

65)
UJ

o

10'

O D A + Experimental Data [15]
—— NN Prediction

10U

A K (KSI SQRT INCH)

Fig. 8 Comparison of MPN predictions of fatigue-crack-growth rate
behavior with experimental data.15

higher g than lower g. For the four spectrums considered, the
fatigue life was reduced to 64% for 8.5g spectrum when the
flight sequence was changed to CBA'A from the original
sequence CBAA'. This demonstrates the usefulness of the
NN approach for studying the effect of flight sequence load-
ings on the fatigue-crack-growth behavior.

The above experiments demonstrate that the fatigue-crack-
growth behaviors predicted from NN are reasonable and it
provided the correct trends for different variations considered
in the spectrum loadings, even with limited training data. The
results of NN predictions from these limited studies demon-
strate that the network was able to learn the relationship
between crack growth and the number of loading cycles for
different variations in the loading spectrums as well as se-
quence of flight loadings. For more accurate predictions, a
larger training set is needed.

Fatigue lives are very sensitive to subtle changes in the
magnitude and sequence of uncertain overloads that might
be large as compared to the remaining cyclic loads in the
loading spectrum. It is known that tensile overloads increase
fatigue lives, provided that it does not cause immediate frac-
ture. A large training set with a variety of overloads with
different magnitude and sequence are required for training
the NN before any generalization can be made and applied
to estimate the fatigue life of cracked structural components
under complex loadings.

Figure 8 shows the fatigue-crack-growth rate vs AK curve
predicted from MPN using the material parameters along with
the experimental data obtained for constant amplitude tests.15

These material constants are C = 2.4376 x 10~8, n = 2.6,
and m = 0.6. A good agreement is seen even though the
input data size is very small. In order to see how the stress
ratio will affect the material constants, the results for different
values of stress ratio for all the spectrums were obtained. It
was found that the stress ratio has no effect on the material
constants. This is expected because the material parameters
should not change for various spectrums loadings.
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VI. Conclusions
A back-propagation neural network is developed to rep-

resent the fatigue-crack-growth behavior under aircraft spec-
trum loadings. Predictions obtained from NN are in good
agreement with the experimental data for five different types
of spectrum loadings considered. The FCN was tested against
variations in g spectrums as well as the sequence of flight
loadings. The results of NN-predicted fatigue-crack-growth
behavior seem reasonable for generalization, even with lim-
ited training data. The material parameters predicted from
MPN are in good agreement with the experimental data for
constant amplitude tests. Overall, the predictions from this
limited study demonstrate the feasibility of the NN approach
to study fatigue-crack-growth behavior. However, there are
limitations in the present NN approach due to drastic changes
in fatigue lives for subtle changes in the magnitude and se-
quence of uncertain overloads in the loading spectrum as well
as not predicting the fracture. Based on the limited perfor-
mance of the NN method developed in this study, it is possible
that this approach can be extended to estimate the fatigue
life of arbitrary cracked structural components under complex
loadings in real time. More research than presented in this
study is needed before such realistic predictions can be made.
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